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We study the nature of highly excited eigenstates of strongly coupled multimode systems with three degrees
of freedom. Attempts to dynamically assign the eigenstates using classical-quantum correspondence techniques
poses a considerable challenge, due to both the number of degrees of freedom and the extensive chaos in the
underlying classical phase space. Nevertheless, we show that sequences of localized states interspersed between
delocalized states can be identified readily by using the parametric variation technique proposed earlier by
us. In addition, we introduce a novel method to lift the quantum eigenstates onto the classical resonance web
using a wavelet-based local time-frequency approach. It is shown that the lifting procedure provides clear
information on the various dominant nonlinear resonances that influence the eigenstates. Analyzing the
spectroscopic Hamiltonians for CDBrClF and CF3CHFI as examples, we illustrate our approach and demonstrate
the consistency between state space and phase space perspectives of the eigenstates. Two exemplary cases of
highly mixed quantum states are discussed to highlight the difficulties associated with their assignment. In
particular, we provide arguments to distinguish between the states in terms of their predominantly classical
or quantum nature of the mixing.

1. Introduction

Several groups, over studies spanning nearly three decades,
have established that decoding the dynamical information hidden
in highly excited quantum states is best done via the classical-
quantum approach.1-24 In other words, the assignments are based
on invariant classical phase space structures and there is
sufficient evidence that changes in the phase space structures
translate into appearance/disappearance of new classes of
quantum eigenstates as well as spectral perturbations.1,5,18 For
example, the celebrated Einstein-Brillouin-Keller (EBK)
method21 utilizes the phase space tori for assignment in the
integrable case. At the other extreme of strongly chaotic phase
spaces one has quantization based on periodic orbits and the
scarring22 of quantum states by the unstable periodic orbits.
Thanks to the finiteness of the Planck’s constant, it is even
possible to assign quantum states based on partial structures in
the phase space like vague tori23 and recent studies24 have also
established the crucial role played by the homoclinic orbits. At
the same time, rapid developements25 in our ability to calculate
accurate rovibrational eigenstates and eigenvalues provide a
unique opportunity to critically examine and extend the methods
based on classical-quantum correspondence to systems with a
large number of degrees of freedom.

The importance of such studies stems from the fact that the
structure and patterns exhibited by the highly excited eigenstates
yields valuable insights into the process of intramolecular
vibrational energy redistribution (IVR)26-30 which, in turn, leads
to a better understanding of chemical reaction dynamics.
Although IVR is understood more naturally from a time-
dependent viewpoint, i.e., the dynamics of a zeroth-order bright
state and its mixing with the zeroth-order dark states belonging
to different tiers,26 the time-independent perspective has its own

merits. The apparent contradiction, that a molecular eigenstate
does not “move” and hence there is no IVR, is easily resolved
since the natural representation is now the energy or frequency
domain. Therefore the infinite time limit of the IVR dynamics
is imprinted onto the eigenstates in the form of subtle features,
both strong and weak.27 The time and frequency domain
information are Fourier related and, hence, it is possible to infer
the time-dependent dynamics from the fractionation pattern of
a bright state as revealed by a frequency domain experiment.
In this sense, assignment of the highly excited eigenstates is
tantamount to insights into the IVR dynamics of the molecule.

Assigning the eigenstate, at any energy, of a molecule with
D vibrational degrees of freedom means that one can associate
D good quantum numbers with the state. The existence of such
a set of quantum numbers associated with D mutually com-
muting set of operators is, however, very rare in generic systems.
At energies close to equilibrium, eigenstates can be assigned,
assuming the absence of phenomenon like monodromy31 and
dynamical tunneling,32,33 in terms of uncoupled harmonic
oscillators (normal modes) or uncoupled Morse oscillators (local
modes). The situation is more complicated at higher energies
due to the coupling of the normal (local) modes, and it is not
possible to guarantee the existence of the required number of
good quantum numbers. Needless to say, the energy at which
mixed states begin to show up is strongly dependent on the
size of the molecule; for large molecules highly mixed states
can be observed already around energies corresponding to the
first vibrational overtone. On the other hand, highly vibrationally
excited states of small molecules are expected to be significantly
mixed.

The essence of any method for dynamical assignment of
eigenstates is to identify the part of the phase space supporting
localized eigenstates. If the dynamical nature of that part of the
phase space can be identified, then hopefully a sequence of
eigenstates can be found. The organization of the sequence
of eigenstates can than be naturally ascribed to the existence of
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some approximate conserved quantities implying the existence
of approximate quantum numbers. One can debate the utility
of a level-by-level assignment of molecular eigenstates as
opposed to a global statistical description.34,35 In this regard we
note that molecular systems rarely, if ever, approach the random
matrix limit. Moreover, even for a molecule with large density
of states, one might be interested in a select group of eigenstates,
in some energy range of interest, whose assignment leads to
insights into the dynamics of the molecule.36-38 For instance, a
recent investigation of conformational isomerization reaction
clearly highlights the link between deviations from statisticality
and the existence of several classes of vibrational eigenstates.37

However, the dynamical assignment approach runs into severe
difficulties for systems with three or more degrees of freedom.
The reasons for the difficulties are well documented in the
literature, and we refer the reader to the earlier works for a
detailed exposition.4 In short, low dimensional approaches
cannot be extended in a straightforward fashion and there is a
need for alternative ways of extracting the dynamical informa-
tion encoded in the mixed quantum states. The present work,
motivated by the usefulness of the dynamical assignment,
focuses on analyzing the highly excited eigenstates of systems
with three degrees of freedom in order to alleviate some of the
inherent difficulties associated with the classical-quantum cor-
respondence approach for such systems. Several different tools
are used to elucidate the nature of the highly excited eigenstates.
In particular, a new method for lifting the eigenstates onto an
appropriate representation of the phase space is proposed. We
show that a combination of techniques can efficiently reveal
the localized eigenstates interspersed among the highly mixed
ones and further distinguish between mixed states arising due
to predominantly classical or quantum mechanisms.

We start with the theoretical background for dynamical
assignments, followed by a description of the methods used in
the current work. In the subsequent sections we illustrate our
approach using the spectroscopic Hamiltonians for CDBrClF29

and CF3CHFI30 as examples. The choice of these systems is
motivated by the pioneering experimental and theoretical
studies28 of CD/CH chromophore dynamics by Quack and co-
workers. Apart from elucidating several features of the IVR
dynamics in these systems, such studies have provided explicit
effective Hamiltonians for analyzing the dynamics and eigen-
states in specific energy regimes. Further motivation comes from
recent detailed studies7,8 by Jung et al. on the same systems as
above wherein insights into the nature of the eigenstates and
their dynamical assignments are provided. In the systems of
interest for the current study, the Hamiltonians involve four
strongly coupled high-frequency modes with a conserved polyad.
Thus, despite having effectively three degrees of freedom, both
systems possess many highly mixed quantum states due to the
presence of strong anharmonic resonances. Hence, the examples
considered in the current work provide a stringent test for any
classical-quantum correspondence based analysis. The last
section concludes with remarks and future outlook.

2. Theoretical Background

2.1. Hamiltonian. In this study we focus on spectroscopic
Hamiltonians for vibrations which can be expressed as

H)H0 +∑
k

τkVk(a, a†) (1)

with the zeroth-order Dunham term39

H0 )∑
j)1

N

ωjVj + ∑
i,j)1

N

xijViVj + . . . (2)

In the above equations, aj, aj
†, and Vj ≡ aj

†aj are the harmonic
destruction, creation, and number operators of the jth-mode
respectively. The harmonic frequencies and anharmonicities are
denoted by ωj and xij, respectively. We make two observations
at this stage. First, the Dunham expansion can be carried out to
higher order in anharmonicities and inclusion of the higher order
terms is not a constraining factor for the method proposed in
this work. Second, as opposed to the above normal-mode basis,
one can use a local-mode basis leading to the so-called algebraic
Hamiltonians.19 Although the classical limit Hamiltonian is more
complicated in such cases, the analysis presented here can be
done with no additional complications. We also note that the
advantages and disadvantages of using a spectroscopic Hamil-
tonian are well-known and hence will not be reiterated here. It
is useful to mention, however, that the dynamics inferred from
the analysis is on a firmer basis if the spectroscopic Hamiltonian
is extracted9,40,41 from a global potential energy surface by
performing a quantum Van Vleck42 or classical Birkhoff-
Gustavson perturbation43,44 theory.

In eq 1 the various anharmonic resonances

Vk )∏
j)1

N

(aj
†)mjk

+
(aj)

mjk
-
+ h.c (3)

with mk ≡ (m1k
( , m2k

(, · · · , mNk
() are necessary to obtain an accurate

description of the vibrational eigenstates and dynamics. Note
that we are assuming the Hamiltonian to be already in the
simplest form possible taking into account the various conserved
quantities45,46 (polyads) K ≡ (K1, · · · , KF). Thus, the original
system has the full dimensionality D ) N + F and an effective
dimensionality N < D. The existence and construction of the
polyads are well understood and related to the nature and
number of independent resonances among the D vibrational
modes.45,46 Typically, some (or all) of the polyads might be
approximate depending on the energy range of interest since
eq 1 often ignores other smaller perturbations. The extent to
which specific polyads are conserved is also evident from the
experimental spectra. Indeed, the concept of polyads plays a
crucial role in interpreting the various spectral features.47

2.2. Need for Dynamical Assignments. Clearly, with no
further information, all eigenstates can be assigned F quantum
numbers corresponding to the polyads. A complete assignment
would require specifying the remaining (D - F) quantum
numbers. Strictly speaking, in generic systems, finding the
remaining quantum numbers is a hopeless task since they do
not exist. Nevertheless, for a given set (K1, · · · , KF) certain
eigenstates might be predominantly influenced by a few, single,
or none of the resonances. In such instances the eigenstates are
localized and characterized by an appropriate number of
quantum numbers. The additional, necessarily approximate,
quantum numbers can be thought of as arising from the
approximate decomposition of a polyad into subpolyads, for
example, Kj ≈ K̃1 + K̃2 + K̃3. It is important to realize that the
origin of the subpolyads K̃ is dynamical, i.e., the approximate
decomposition (or decoupling) is a consequence of the dynam-
ics. Therefore the possible K̃ are not easily determined by the
inspection of the Hamiltonian or even the experimental spectrum
alone. A more detailed discussion of the notion of approximate
conserved quantities and their impact on IVR can be found in
the article by Kuzmin and Stuchebrukhov.48 Further, in a given
energy range it is quite possible for different dynamical
decouplings to manifest resulting in a complicated interleaving
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pattern of localized eigenstates. From the above discussion it
is clear that a dynamical assignment of the eigenstates is the
correct approach to adopt. An added bonus is that the dynamical
assignment automatically reveals the dynamics encoded in a
given quantum state.

The essential idea is that regions in the classical phase space
which are characterized by smaller than average classical
instability may trap classical trajectories. In the context of the
Hamiltonian above, such traps can be due to the dominance of
a particular resonance and it is expected that this leads to long
time dynamical correlations. The resulting phase space inho-
mogeneity, in turn, can give rise to wave function localization.
Therefore the first step in the analysis is to study the dynamics
of the classical limit Hamiltonian corresponding to eq 1.
Transition to the classical limit is particularly simple for
spectroscopic Hamiltonians (obtained via the correspondence
principle)49 and the resulting classical Hamiltonian can be
written as

H (J, ψ))H0(J)+ 2∑
k

τkfk(J) cos(mk · ψ) (4)

The action-angle variables50 (J, ψ) in eq 4 are related to the
original action-angle variables (I, O) ≡ (I1, · · · , ID, φ1, · · · , φD)
of the unperturbed part of the D-dimensional Hamiltonian via
a canonical transformation. The canonical transformation leads
to explicit reduction of the system to N-degrees of freedom and
thus (J, ψ) ≡ (J1, · · · , JN, ψ1, · · · , ψN). The reduced Hamiltonian
is cyclic in the remaining angle variables (ψN+1, · · · , ψN+F)
which are conjugate to the classically conserved quantities {Kj

c; j
) N + 1, · · · , N + F}. Thus, Kc are the classical analog to the
quantum polyads K. The various anharmonic resonances in eq
1 manifest as nonlinear resonances in eq 4. For systems with N
) 2 there are a number of techniques that can be utilized to
dynamically assign the quantum states34,35,3,14,16,13 On the other
hand, for systems with N g 3 very few approaches are
avaliable7-11 and have to do with the fact that most of the
methods used in N ) 2 are difficult, if not impossible, to
generalize.4

2.3. Semiclassical Wave Function Approach. A first step
toward extending the classical quantum based dynamical
assignments for N g 3 was taken recently by Jung et al. in a
series of papers.7-9 Their approach, inspired by an earlier work
by McCoy and Sibert,17 is based on visualizing the quantum
states in the classical angle space. For a specific eigenstate |ΨR〉
of eq 1, with eigenenergy ER, the semiclassical angle-space
representation is obtained as

ΨR(ψ) ≡ 〈ψ|ΨR 〉 ) ∑
V∈ polyad

CR;v exp(iv · ψ) (5)

In the above equation, CR;v represents the contribution of the
zeroth-order state |v〉 (eigenstates of H0 in eq 1) to the eigenstate
and the restriction on the sum comes from the conserved polyads
K. As noted by Jung and Taylor, the semiclassical representation
in eq 5 corresponds to the Fourier decomposition of ΨR onto
the configuration space, N dimensional torus, of angles ψ ≡
(ψ1, · · · , ψN). One then analyzes the density and phase of ΨR(ψ)
to provide a dynamical assignment. The crucial point here is
that dynamical assignment is possible if the density is localized
about one or more angle variables. Such localizations signal
the importance of a specific number of independent resonances.
Stated differently, the importance of a relatively small number
of resonances is equivalent to the notion of dynamical decou-
pling mentioned earlier. For instance, the approximate decou-
pling Kj ≈ K̃1 + K̃2 + K̃3 implies that three independent

resonances organize the eigenstates. Consequently, the density
|ΨR(ψ)|2 is further reduced in dimensionality and becomes a
function of (N - 3) angle (in general different from ψ) variables.
This (N - 3)-dimensional angle space is now the organizing
structure with three transverse directions along which the
eigenstate exhibits localization. The relevant quantum numbers
are then found by node counting of |ΨR(ψ)|2 along the transverse
directions and phase advance (modulo 2π) around independent
loops on the organizing structure.

In general, however, for N g 3 identifying the organizing
structure requires dynamical guidance. This is not surprising in
light of the aforementioned fact that the localizations are
inherently dynamical in nature. At the same time, precisely due
to the dynamical origins, obtaining the ideal organizing structure
is a nontrivial task. For example, in the case of systems with N
) 3 the configuration angle space is a three-dimensional torus.
Visualizing the density and phase variations of ΨR(ψ) over such
a three-dimensional torus might not be easy and one invariably
has to resort to cuts through the space. Another complication
comes from the fact that in a given energy range there might
be several choices for the organizing structure. Again, dynamical
considerations are essential to choose one organizing structure
over the other. These points, and possible approaches to
circumvent the problem, have been discussed in detail by Jung
et al. in their recent analysis of the effective Hamiltonian for
molecules like CDBrClF,7 CF3 CHFI,8 and SCCl2

9 with N ) 3.
Nevertheless, it is clear that uncovering the nature of the
organizing structure through several appropriately chosen two-
dimensional cuts becomes unwieldy with increasing N. We refer
the reader to a recent comprehensive review10 by Jung and
Taylor for details.

3. Present Approach

3.1. Parametric Variations and “Level-Velocities”. Note
that the approach of Jung et al. does not explicitly require
determining the periodic orbits and their bifurcations to dynami-
cally assign the quantum states. In this sense it is an important
step forward and a strong point in favor of their approach, but
the need for visualizing the states restricts its utility. We remark
here that similar concerns are responsible for abandoning
techniques based on lifting the quantum states onto the
appropriate Poincaré surface of sections.50 Therefore, methods
which do not require visualization are needed. One such method
has been proposed by us earlier13 and is based on studying the
eigenstate expectation value of the resonance operators. Ap-
plications to several molecules like DCO, CHBrClF, and C2H2

with N ) 2 has shown that it is possible to dynamically assign
the quantum states. The assignments more or less agreed with
those proposed using the method of Jung et al. and hence
identifies the correct dynamical information encoded in the
states.

The central object in our method is the expectation value
(diagonal matrix element of an operator in the eigenbasis):

Vk
R ≡ 〈ΨR|V̂k|ΨR 〉 )

∂ER

∂τk
(6)

where the second equality follows from the Hellman-Feynman
theorem.51 The derivatives of the eigenvalues with respect to
the resonant perturbation of interest are also known as “level-
velocities” in the literature.52,53,13 At the outset we mention that
the expectation value and level-velocity are related to one
another via eq 6. In particular, the qualitative insights provided
by both the quantities are identical. However, quantitatively they
can differ by a constant numerical factor which, for the
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Hamiltonian of interest in eq 15, is easily determined. In
subsequent discussions the terms expectation values and level-
velocities will be used interchangeably. Several workers have
established54 the deep insights afforded by the level-velocities
in studies involving quantum chaotic systems. It is also of
relevance to note that the diagonal matrix elements play a central
role in formulating a criterion for quantum ergodicity via the
so-called Shnirelman-Colin de Verdiere-Zelditch (SCdVZ)
theorem.55 According to SCdVZ, in the semiclassical limit, the
quantum eigenstate expectation values of certain operators is
almost always the ergodic, microcanonical average of the
classical phase space symbols corresponding to the operators.
Thus, for an ergodic state

Vk
R ≈ Vk

cl )
2∫Vk(J, ψ)δ[ER-H(J, ψ)] dJdψ

∫ δ[ER-H(J, ψ)] dJdψ
(7)

for any choice of V̂k and, conversely, violation of eq 7 implies
the existence of localized states. Note that the resonant operators
in eq 1 have a smooth classical limit V̂k f 2Vk (J, ψ).
Subsequently, several studies56-62 explored various aspects of
SCdVZ, leading to important insights into the issue of quantum
ergodicity. Detailed discussions, for example, can be found in
the paper by Kaplan and Heller56 and in the recent work57 of
Bäck et al. with several examples. Although in this work we
do not specifically address the validity of the SCdVZ, it is clear
that the notion of quantum ergodicity is intimately tied to the
dynamical (un)assignability of the quantum states.

Semiclassical arguments for the connection between phase
space objects causing localization and the quantum expectation
values Vk

R has been given in many different contexts.13,59-62,64

In essence the semiclassical considerations are based on
analyzing the weighted spectral function ∑RVk

Rδ(E - ER) written
in terms of periodic orbit sums. Mehlig et al.61 have noted that
the fluctuations of Vk

R, assuming V̂k has a smooth classical limit
and [V̂k,Ĥ] * 0, reflect the inhomogeneities in the classical phase
space and hence nonuniversal. Specifically, in the semiclassical
limit

Vk
R ≈ ( Fc

Ftot
)Vk;c

R + ( Fr

Ftot
)Vk;r

R (8)

with Ftot, Fr, and Fc being the total, regular, and chaotic state
densities, respectively. The chaotic and regular contributions
to the expectation value are denoted by Vk;c

R and Vk;r
R , respectively,

with explicit semiclassical expressions based on the correspond-
ing classical invariant structures. It has been argued that Vk;r

R

has as many limiting values as there are regular components in
the phase space. The regular components (islands) are associated
with periodic orbits.

Although the work by Mehlig et al.61 and Boosé and Main62

addresses the scaling system corresponding to a hydrogen atom
in a strong magnetic field, recent independent work in the
molecular context13 shows that the expectation values can detect
bifurcations and identify the birth of new modes in the
nonscaling cases as well. For example, the occurrence of modes
like the counter-rotator and local bender in C2H2

63 can be
detected by the level velocities.13 Importantly, from a compu-
tational perspective, the level velocities can be computed very
easily by performing two diagonalizations. At the same time
note that irrespective of the dimensionality of the system it is
possible to identify the localized eigenstates by inspecting the
two-dimensional plot of eigenvalue variations with changing
the parameter of interest. Thus large |Vk

R|, i.e., large level

velocities, imply that the eigenstate |ΨR〉 is localized in a regular
part of the phase space characterized by the resonance mk ·Ω
≈ 0.

3.2. “Lifting” the Eigenstates onto the Resonance Web:
Time-Frequency Analysis. As discussed above, dimensional-
ity constraints for systems with N g 3 lead to difficulties
associated with techniques based on correlating the Husimi65

or Wigner66 functions of the eigenstates with the underlying
phase space structures. On the other hand, several studies67,69-71

on IVR from a time-dependent perspective have established the
importance of the resonance or Arnol’d web, i.e., the various
resonances and their disposition in the phase space. In other
words, the key information is hidden in the various frequency
lockings that an initial bright state experiences as a function of
time. At the same time one can also obtain valuable information
regarding the local structures in the phase space that influence
the dynamics. Given the intimate connection between time and
frequency domain descriptions of IVR, it is natural to expect
the resonance web to play a crucial role in determining the
nature of the eigenstates as well. However, to the best of our
knowledge, an explicit connection between the resonance web
and the quantum eigenstates has not been established to date.
In this section we establish one such connection based on
time-frequency analysis and hence “lift” the eigenstates onto
the resonance web. The following sections provide concrete
examples demonstrating the utility of the technique in conjunc-
tion with the level-velocity analysis.

Consider the reduced classical Hamiltonian (equivalent to
considering the full D-dimensional Hamiltonian due to canonical
invariance) of eq 4 and note that the lth time-dependent
nonlinear frequency is given by

ψ̇l )
∂H(J, ψ)

∂Jl
)

∂H0(J)

∂Jl
+ 2∑

k

τk

∂fk(J)

∂Jl
cos(mk · ψ) ≡

Ωl
0(J)+ Ω̃l(J, ψ) (9)

wherein the zeroth-order frequency, time independent in the
absence of the resonant perturbations, is denoted by Ωl

0(J). The
oscillatory part Ω̃l(J, ψ) becomes important if the system enters
a resonant region. In general, presence of several independent
resonances renders the system nonintegrable with the classical
phase space being mixed regular-chaotic. Consequently, the
nonlinear frequencies depend on time and exhibit large varia-
tions. However, several works67-79 starting with the pioneering
paper by Martens, Davis, and Ezra67 have shown that even
chaotic trajectories can exhibit regular behavior over large
intervals of time. The main reason for such windows of
regularity has to do with the inherently “sticky” nature of the
Hamiltonian systems;79 thus, a chaotic trajectory in the vicinity
of a regular region in the phase space will “shadow” the local
regular dynamics. In turn, the stickiness, lasting from a few to
several picoseconds, leads to long time correlations and can have
significant impact on the IVR dynamics.67-73 Such windows of
regularity, implicating specific resonances, can be identified by
keeping track of the time-dependent nonlinear frequencies and
appropriate ratios thereof.

Several methods67-77 have been proposed to obtain the time-
dependent frequencies, and in this work we follow the approach
based on wavelet analysis.75 Classical trajectories are computed
over a time interval [0, T] starting with the initial conditions
(J(0), ψ(0)) chosen corresponding to specific values of the
energy (e.g., eigenstate) and any other constants of the motion
(polyads). The dynamical function zl(t) ) (2Jl(t))1/2 exp(iψl)
associated with the action-angle variables (Jl, ψl) for the lth-
mode is then subjected to a wavelet transform75
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Lgzl(a, b)) a-1⁄2∫-∞

∞
zl(t)g*(t- b

a ) dt (10)

with a > 0 and real b. As in the previous studies we choose the
Morlet-Grossman form for the mother wavelet

g(t)) 1

√2πσ2
exp(2πiλt- t2

2σ2) (11)

with λ ) 1 and σ ) 2. The wavelet transform in eq 10 yields
the frequency content of zl(t) over a time window around t )
b. In principle it is possible76 to analyze all the frequencies, but
for the purposes of this work it is sufficient to retain the
dominant local frequency, i.e., Ωl(t ) b) ) maxa|Lgzl(a,b)|.

A general condition for resonant locking (commensurable
frequencies) can be written down as

R1Ω1 +R2Ω2 + . . . +RrΩr ) 0 (12)

with integers (R1, R2, · · · , Rr) and ∑kRk being the order of the
resonance. The set of all resonances, at given (E, K), up to some
maximal order forms the resonance (Arnol’d) web to that order.
Theoretically, with the knowledge of the zeroth-order Hamil-
tonian it is possible to determine the web explicitly via the
intersection of the various resonance hyperplanes mk ·Ω0(J) )
0 with the relevant energy shell H0(J) ≈ E. However, such a
“static” construction cannot a priori highlight the dynamically
significant regions of the resonance web except in the limit of
small perturbations.77 We, therefore, construct the “dynamical”
web by the following procedure. Several trajectories with given
(E, K) are propagated and followed in the space of appropriately
chosen, independent frequency ratios. Depending on the number
of degrees of freedom, one can have several such spaces. For
each trajectory the total number of visits to a given region of
the frequency ratio space is recorded. The density plot, created
by averaging and normalizing the number of visits over all the
trajectories yields the resonance web.

Once the resonance web has been constructed as above, it is
possible to identify the various resonance zones that are
dynamically important at specific (E, K). Note that, in general,
(R1, R2, · · · , Rr) might not belong to the set of primary
resonances {mk}. In such instances the observed locking in eq
12 can be shown to be induced by the primary resonances. If
such induced lockings persist over long time scales, then they
will manifest prominently in the resonance web and potentially
influence the nature of certain quantum eigenstates. Clearly, if
one can lift the quantum states onto the resonance web, then
the dominant influences can be ascertained immediately. But
how does one lift the quantum states onto the resonance web?
We now propose a method based on the time-frequency analysis
discussed above. In essence, our method provides a higher
dimensional analog to the two degrees of freedom procedure
involving superposing the Wigner or Husimi function of a state
onto the Poincaré surface of section.

We begin by noting that a specific eigenstate |R〉 with
eigenvalue ER can be expressed as a linear combination of the
zeroth-order number states |V〉 (with energy Ev

0) as

|R 〉 )∑ Cv
R

v

|v〉 (13)

The quantity, |Cv
R|2 is the relative contribution of the zeroth-

order state |v〉 to |R〉 . Semiclassically, one associates classical
zeroth-order actions (well-defined since H0(J) is integrable) J
with every zeroth-order quantum state |v〉 via the rule

VlT (Jl +
dl

2 )p (14)

with dl being the degeneracy of the lth mode. Therefore, for a
specific |v〉 in the expansion eq 13 we fix the classical actions
according to eq 14 and generate several initial conditions
(JV(0), ψ(0)) such that H(JV, ψ) ) Ev

0. The classical dynamics
ensuing from each initial condition is subjected to the wavelet
transform and followed in the frequency space as before. The
number of visits to a particular region in the frequency ratio
space is averaged over the initial angles weighted by |Cv

R|2. This
is crucial since |Cv

R|2 properly takes into account the relative
contribution by the specific zeroth-order state. The procedure
is repeated for every one of the zeroth-order states contributing
in eq 13, and the weighted densities at each cell of the space,
arising from every |v〉 , are added together. Finally, the densities
are normalized to one and the resulting lifted eigenstate is
compared to the (ER, K) resonance web.

A few comments are in order at this stage. First, for localized
eigenstates we expect there to be considerable difference
between the resonance web and the lifted eigenstate. On the
other hand, lifts of delocalized eigenstates in any independent
frequency ratio space should show the same overall features as
that of the resonance web, in accordance with the SCdVZ
theorem. Second, there might arise questions regarding the basis-
set dependence of the lift. Expressing |R〉 in a different basis
would entail the usage of a different set of zeroth-order classical
actions. However, the invariance of classical dynamics under
canonical transformations (corresponding to the unitary basis
change) ensures that the observed features are left invariant.
Third, from the perspective of computational ease, it is useful
to impose a cutoff |Cv

R|2 e ε in order to restrict the total number
of zeroth-order states that need to be considered for the lifting
procedure. Note that convergence can be easily checked by
varying ε, and in this work we set it to a value of 0.005.

4. Application

4.1. Spectroscopic Hamiltonian. The effective Hamiltonians
of interest in this work pertain to the high-frequency modes of
the two molecules CDBrClF and CF3 CHFI. The fitted Hamil-
tonian for CDBrClF has been determined by Beil et al.29 based
on experimental spectra covering all the fundamentals and CD-
stretching overtones up to polyad N ) 5 of CDBrClF. The four
high-frequency normal modes of CDBrClF correspond to CD
stretch (νs), CF stretch (νf), and the two CD bends (νa and νb).
Beil et al. noted in their work that restricting their fit to the
three CD normal modes does not even approximately account
for the observed spectra, and hence the CF stretching mode has
to be included. In a companion paper, Pochert et al. fitted the
CF3 CHFI spectrum30 in a similar fashion with CH stretch (νs),
CF stretch (νf) and the two CH bending modes (νa and νb). Since
both the effective Hamiltonians have identical structure, we
analyze them together in this work.

The effective Hamiltonian H ) H0 + Vres with the anharmonic
zeroth-order part

H0 )∑
j

ωjaj
†aj+∑

iej

xijai
†aiaj

†aj (15)

has a total of nine resonant perturbations included in Vres. These
anharmonic resonances representing the off-diagonal coupling
between the four modes are

Nature of Highly Excited Eigenstates J. Phys. Chem. A, Vol. 113, No. 9, 2009 1721



Vres )∑
jem

a,b,f ksjm

2√2
(asaj

†am
† + as

†ajam)+

1
2∑j<m

a,b,f

γjm(aj
†aj

†amam + ajajam
† am

† ) (16)

The harmonic creation and destruction operators for the jth mode
are denoted by aj

† and aj, respectively. Note that despite the
four coupled modes the system has effectively three degrees of
freedom due to the existence of a conserved polyad

N)Vs +
1
2

(Vf +Va +Vb) (17)

and the number of states, for integer N given by

WN )
1
2{ 1

3
(N+ 1)[4(N+ 1)2 - 1]+ (N+ 1)2} (18)

We restrict ourselves to the N ) 5 (total of 161 eigenstates)
polyad for both molecules. The Hamiltonian parameter values
are taken from the fit provided in the experimental works29,30

and are reproduced in Table 1 for convenience. It is important
to note that for both molecules the Fermi resonance strengths
ksjm are quite large; in fact the strengths are larger than the mean
energy level spacings of H0 for polyad N ) 5. On the other
hand, the Darling-Dennison strengths γjk are considerably larger
in the case of CF3 CHFI as compared to those of CDBrClF.
The presence of several strong anharmonic resonances implies
that one should expect extensively mixed eigenstates for both
the systems.

4.2. Classical Limit Hamiltonian. The classical limit of the
above effective Hamiltonian, after proper symmetrization,7 is
obtained in the usual fashion by invoking the Heisenberg
correspondence49

ajf √Ije
-iφj, aj

†f √Ije
iφj (19)

with (I, O) being the unperturbed action-angle variables. In terms
of (I, O) the classical Hamiltonian takes the form

H(I, φ))H0(I)+Vres(I, φ) (20)

with

H0(I))∑
j

ω̃jIj +∑
iej

xijIiIj -E0 (21)

being the zeroth-order integrable part and E0 is the zero-point
energy. In the above, the new frequencies ω̃ are determined in
terms of the old frequencies ω and anharmonicities {xij}. The
resonant perturbations similarly can be expressed as:

Vres(I, φ))∑
jem

a,b,f ksjm

√2
√Is Ij Im cos(φs - φj - φm)+

∑
j<m

a,b,f

γjm Ij Im cos(2φj - 2φm) (22)

As in the quantum case the classical Hamiltonian also has
effectively three degrees of freedom due to the exact conserva-
tion of the classical polyad K ) Is + (If + Ia + Ib)/2 ) P +
5/4.

Explicit dimensional reduction to three degrees of freedom
can now be performed by recognizing the existence of K, i.e.,
by doing an appropriate canonical transformation:7

F) 1
2∑k

a,b,f

Jk(2φk - φs)+Kφs (23)

resulting in the new Hamiltonian

H(J, ψ;K))∑
j

a,b,f

ωj Jj +∑
jek

a,b,f

xjjk Jj Jk +∆+

1

√2
∑
jek

a,b,f

ksjm√Is Jj Jk cos(ψj +ψk)+∑
j*k

a,b,f

γjk Jj Jk cos(2ψj - 2ψk)

(24)

depending only on the angles ψk ) (2φk - φs)/2 and their
conjugate actions Jk ) Ik with k ) a, b, f. The parameters ωj , xj,
and ∆ can be expressed in terms of the original parameters.

5. Analysis of the Eigenstates

In the present situation the approach based on level velocities is
challenging since there are nine perturbing resonances. Due to the
presence of several strong Fermi resonances (50-100 cm-1) one
expects strongly mixed eigenstates. Nevertheless, we show below
that the level velocities can identify the localized states interspersed
among the highly mixed states. However, we start our analysis by
looking at another useful, albeit basis-dependent, measure known
as the inverse participation ratio (IPR). The IPR provides informa-
tion on the extent of mixing of the eigenstates and has been
extensively utilized in earlier studies. We make a few pertinent
observations, based on computing the IPR of the eigenstates in
various basis, which later aid in the analysis of the level velocities.

5.1. Inverse Participation Ratios. The IPR associated with
an eigenstate |R〉 in a specific basis {|l〉} is computed as

L)∑
l

|〈l|R 〉 |4 (25)

In the present case there are several choices for the basis. We
report here the IPR in the zeroth-order |n〉 basis L0 and the IPRs
in basis with a specific mode j decoupled from the rest L-j. For
example, the L-s denotes computations in a basis in which the
mode s is decoupled from the modes f, a, and b. In other words

TABLE 1: Spectroscopic Hamiltonian Parameters (in cm-1)

parameter CDBrClFa CF3CHFIb

ωs 2285.80 3026.60
ωf 1088.22 1306.60
ωa 974.22 1369.50
ωb 919.20 1240.60
xss -34.30 -53.60
xff -6.99 -6.50
xaa -1.91 -4.40
xbb -1.24 -5.40
xsf -5.59 -4.90
xsa -17.33 -12.70
xsb -17.24 -17.70
xfa -5.16 -14.10
xfb 0.18 -1.40
xab 1.40 -3.20
ksff 50.70 41.10
ksaa 39.50 65.80
ksbb 59.80 55.30
ksfa 98.00 61.80
ksfb -91.30 20.70
ksab 91.80 17.50
γab -1.10 -21.10
γfa -1.70 -15.30
γfb 4.00 -26.70

a Values from Table 8 in ref 29 (last column Heff,MP2
4D ). b Values

from Table 1 in 30 (sixth column Hsc-IP
4D ).
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the basis used in the computation of L-s are eigenstates of the
three-mode subsystem

H-s )H0 +∑
j<m

a,b,f

γjm(aj
†aj

†amam + h . c . ) ⁄ 2 (26)

Therefore, a high value of L-j implies a strong decoupling of
the jth mode. However, as a cautionary note we remark that
such an interpretation holds true as long as no new modes have
been created as a result of classical bifurcations.13 Note that
decoupling two of the modes, say j and k, to obtain L-jk in the
present case of interest is the same as computing the IPRs in
various single resonance basis.

In parts a and b of Figure 1 we show the relevant IPRs. We
mention here that single resonance basis IPRs (not shown), apart
from very few states, are comparable to L0 implying the
influence of multiple resonances on a large fraction of the
eigenstates. From Figure 1b it is clear that over the entire energy
range the s mode is strongly coupled. This is due to the fact
that both the L0 and L-s have nearly the same small values. At
the same time the result for L-f, shown in Figure 1a, suggests
that the f mode is decoupled at lower energies. Specifically,
starting from the bottom of the polyad up to an energy of about
9600 cm-1 the eigenstates show very large values for L-f and
hence the unimportance of the f mode. In the same energy region
we observe that the b mode is strongly coupled whereas for
certain states the a mode seems to be decoupled. These
observations contradict the earlier work7 wherein it is claimed
that the first 64 states could be assigned based on the Ωa ≈ Ωb

alone, i.e., decoupling of the modes s and f over the energy
range 8908-9817 cm-1. However, the IPR analysis suggests
that it is more reasonable to assume that the f mode is decoupled
up to about 9500 cm-1.

In a similar fashion panels a and b of Figure 2 show the IPR
data for CF3CHFI eigenstates. It is clear that the s and a modes
are decoupled over a fairly large energy range starting from
the bottom of the polyad. Consistently, Figure 2b indicates the
strong coupling of the f and b modes and these observations
are in accordance with the earlier study8 wherein a large number

of states were seen to be organized by the Ωf ≈ Ωb resonance.
However, there are exceptions that can be seen in Figure 2b
involving a few states with rather large values of L-f. Thus, the
analysis of IPR and their differences, as evident from comparing
Figures 1 and 2, immediately yields two important pieces of
information that can aid in the dynamical assignment of the
states. First, the fraction of states exhibiting strong mixing of
all four modes is considerably more in the case of CDBrClF as
seen in Figure 1a,b in the middle of the polyad. Second, the
complicated interleaving of high and low values of IPRs in both
systems reflects the interleaved sequences of states uncovered
by Jung et al. in their work.7,8

The IPR analysis cannot give any more information regarding
the dynamical assignment. In particular there is no possibility
of extracting a set of approximate quantum numbers from the
IPR data alone. Therefore we now analyze the states using the
methods described in section 3 for a more detailed understand-
ing. However, instead of providing an exhaustive list of
dynamical assignments for every state in the polyad, as has been
done7,8 by Jung et al., from here on we focus on a few
representative examples in order to illustrate our approach and
contrast with the earlier work. Nearly all of the states can be
classified as belonging to the three classes represented by the
selected examples. In the case of CDBrClF we take states 9, 55,
and 111 as examples and in the case of CF3CHFI the exemplary
states are 20, 80, and 161. The first state of both systems (9
and 20) are examples of states whose previous assignment is
not supported by our analysis. The second set of states (111
and 161) are examples for which our assignment agrees with
those provided earlier. On the other hand, the states 55 and 80
are examples of states that pose a considerable challenge for
the dynamical assignment. The relevant IPR and level-velocity
information are shown in Table 2 and Table 3, respectively. In
what follows, we show that IPR and level-velocity information
combined with the state space and phase space representations
yield detailed insights into our ability or inability to dynamically
assign the selected states.

5.2. Level Velocities. In light of the IPR analysis indicating
the decoupling of certain modes, we now ask the following
question: Can the level velocities identify the corresponding
localized states? Inspired by the SCdVZ theorem, it is possible

Figure 1. Inverse participation ratios for CDBrClF eigenstates
belonging to polyad N ) 5. (a) The IPRs L-j in the jth mode decoupled
basis (cf. eq 26) are shown with j ) f (green triangles), j ) a (blue
triangles), and j ) b (magenta circles). The inset (b) shows L-s (circles)
and the zeroth-order basis (line) IPR L0. Panels c, d, and e show select
eigenstates (indicated by arrows in (a) corresponding to states 9, 111,
and 55, respectively) exhibiting linear parametric motion with respect
to specific resonances. The vertical line (red) corresponds to the actual
resonance strength. Only the first two states are dynamically assignable.
In the bottom panels the energy range is about 50 cm-1 centered about
the specific eigenstates of interest. See text for explanations.

Figure 2. Same as in Figure 1 for CF3CHFI eigenstates belonging to
polyad N ) 5. (a) IPRs L-s (black circles), L-a (blue triangle down),
and L0 (red) are shown. Inset (b) L-f (green triangles) and L-b (magenta
circles). Note the difference in the y-axis scale between Figure 1b and
Figure 2b. Panels c, d, and e show level velocities of states 20, 161,
and 80, respectively, with respect to specific resonances. The first two
states, exhibiting linear parametric motion, are localized and hence
dynamically assignable. The last state is an example of a mixed state.

Nature of Highly Excited Eigenstates J. Phys. Chem. A, Vol. 113, No. 9, 2009 1723



to identify the existence of localized states since, for a
delocalized state one expects eq 7 to hold for any perturbing
operator. Violations of eq 7 signal the existence of localized
states, and based on the earlier work of Peres and co-workers
the localized states are expected to show regular patterns in the
plots of Vk

R versus ER. In addition it is possible to provide
classical estimates for the expectation values when |R〉 localizes
about (un)stable periodic orbits corresponding to specific
resonances.13 For example, the classical maximal level-velocity
estimate for a state localized about the fixed point (periodic orbit)
corresponding to the Ωs ≈ 2Ωb Fermi resonance is

( ∂ER

∂ksbb
)

cl
) ( (2Psbb

3 )3⁄2

(27)

with Psbb ≡ Vs + Vb/2 being the subpolyad and the ( sign being
associated with the values ψb ) 0, π/2 of the resonant angle at
the fixed point. Similarly

( ∂ER

∂γab
)

cl
) (Pab

2 (28)

is the classical estimate for the maximum level-velocity of a
state localized in the 2Ωa ≈ 2Ωb Darling-Dennison resonance
zone with the appropriate subpolyad Pab ≡ (Va + Vb)/2 and fixed
point angle (ψa - ψb) ) 0, π/2. Analogous expressions can be
written down for the rest of the resonance term in eq 15. It is,
however, important to note that the classical estimate would be
Pab for states influenced by the Ωa ≈ Ωb resonance. Therefore,
the level-velocity measure can distinguish between states that
are influenced by the primary Darling-Dennison resonance and
those influenced by an induced 1:1 resonance. The classical
estimates allow one to pick the dominant resonance organizing
a specific localized state in cases wherein large deviations from
the SCdVZ are observed for more than one resonant perturbation.

In parts a and b of Figure 3 we show the expectation values
Vsbb
R and Vab

R , respectively, for the N ) 5 polyad of CDBrClF.
In both cases one can clearly observe several states violating
eq 7 and hence localized. In particular, at the lower end of the
polyad, shown in Figure 3c,d, it is possible to discern the regular
patterns associated with the localized states. Note that the
occurrence of regular patterns in Figure 3c,d is in agreement
with the uncovering of regular sequence of states in the previous
analysis of Jung et al. with the dynamical assignments (lf )
Vf, la+b ≡ 2Pab, t). Although we agree with the appearance of
regular states at the lower end of the polyad, there is an
important differencesthe sequences are much more regular with
respect to Vsbb

R as compared to Vab
R . In particular, one of the

sequences (corresponding to (2, 8, t) and shown as a red line in
Figure 3d) is significantly perturbed. The IPR data in Table 2
clearly indicates the decoupling of mode a since L-a ≈ 0.63.

In addition, Table 3 shows that the expectation value Vab is much
smaller than the maximal classical estimate in eq 28 for a state
with Pab ) 4. In the next section we show the state space and
phase space representations for the first member of the sequence
(state 9) to confirm the predictions.

In Figure 4 the three Darling-Dennison expectation values
Vfb
R , Vfa

R , and Vab
R are shown for the N ) 5 eigenstates of CF3CHFI.

The choice of the operators, out of the possible nine in eq 15,
is motivated by the previous assignment8 of a large number of
states with the Ωf ≈ Ωb locking. This is confirmed in Figure 4a
which shows several states, some forming a regular pattern,
exhibiting strong deviations from the classical ergodic value.
However, as seen from parts b and c of Figure 4, there exist
states which show significant deviations with respect to the Ωf

≈ Ωa and Ωa ≈ Ωb lockings as well. For example, the
expectation values Vab

R shown in Figure 4c indicate that several
states lying in the energy region 13000-13600 cm- 1 are
strongly influenced by the Ωa ≈ Ωb Darling-Dennison reso-
nance. Interestingly, previous work8 precisely identifies the same
energy region supporting a few of the “exceptional” states which
show a simple phase structure of ΨR(ψ) only in the ψa ) ψb +
const plane. It is worth pointing out that such information is
obtained within our approach in a straightforward manner.

As another example of the power and utility of the level-
velocities, in Figure 4a we show two of the eigenstate sequences
uncovered by the previous authors.8 The sequences correspond
to states which are dynamically assigned as (la, lb+f, t) )
(0, 10, t)+ (red line) and (1, 9, t)+ (blue line) with varying values
of the transverse quantum number t relative to the plane ψf )
ψb. However, from the perspective of the level velocities, one
of the states in the (0, 10, t)+ sequence stands out in terms of
the expected linearly decreasing trend. On closer inspection it
is indeed found that the state in question is not organized by
the Ωf ≈ Ωb lock. Instead, a different state fits the sequence
and the resulting corrected sequence is shown in Figure 4a by
dotted red line. Similarly, one of the states in the (1, 9, t)+
sequence is much better described as a Ωf ≈ Ωa state since, as
shown in Figure 4b (blue square) and Table 3, it exhibits a much
larger Vfa

R as compared to Vfb
R . Further evidence for our

assignment from both the state space and phase space perspec-
tive is provided in the following section.

Before ending this section we note that, given the scaling
(cf. eqs 27 and 28) of the level velocities with the approximate
subpolyads, inspecting Figures 3b and 4 one can infer that some
of the lowest energy states of CDBrClF are influenced by the
induced Ωa:Ωb ) 1:1 resonance as opposed to the 2Ωa ≈ 2Ωb

Darling-Dennison resonance. Our dynamical calculations show
that several of the two and three mode Fermi resonances are
active over the entire energy range. In contrast, for CF3CHFI
we observe that the dynamics is dominated by the three
Darling-Dennison resonances.

5.3. Quantum States in State Space and Phase Space. In
this section we take the exemplary states mentioned in the
previous section and lift them onto the classical phase space
using the procedure given in section 3.2. In addition, select states
are also represented in the discrete zeroth-order quantum number
space (state space) with the analogous classical zeroth-order
action space as a template. A prime motivation for showing
the state space representation, apart from demonstrating the
classical-quantum correspondence, comes from several studies
which show that IVR is best understood as a diffusive process
in the quantum state space.80 The classical state space template
provides information regarding the nature of the dynamics and
is constructed as follows. Several initial (J, ψ) are chosen with

TABLE 2: IPR in Various Basis for the Example States
Discussed in the Papera

state ER L0
b L-s L-f L-a L-b L-jk

d

CDBrClF 9 9278 0.16 0.14 0.27 0.63c 0.11 0.25 (sbb)
55 9749 0.04 0.06 0.04 0.04 0.23 *

111 10164 0.19 0.25 0.19 0.35 0.22 0.25 (fb)
CF3CHFI 20 12283 0.08 0.43 0.07 0.15 0.30 0.17 (fa)

80 13016 0.04 0.15 0.05 0.08 0.06 *
161 14173 0.22 0.17 0.66 0.21 0.97 0.64 (saa)

a Cf. eq 26. b IPR in the zeroth-order basis. c The highest IPR
value, indicating specific weakly coupled mode(s), are shown in
bold. d Largest IPR in a single resonance basis (indicated within
brackets) and * indicates the absence of any dominant value.

1724 J. Phys. Chem. A, Vol. 113, No. 9, 2009 Manikandan et al.



the energy constraint H(J, ψ; K) ) ER and classical trajectories
are propagated from t ) 0 to some sufficiently large time t )
T. The time-frequency analysis of the trajectories is used to
define a diffusion constant associated with the kth-mode as

dk(T)) 1
T∫0

T
|Ωk(t)-Ωj k| dt (29)

with Ωj k being the average frequency. From the definition of
dk(T) given above, it follows that dk(T) ≈ 0 for regular dynamics
and also for dynamics that exhibits significant stickiness around
regular regions over the time interval of interest. However,
chaotic dynamics leads to large frequency variations and hence
lead to large, nonvanishing dk(T). The diffusion constant
associated with all the modes can be determined and we
associate Σk dk(T) with the specific point (Is, If, Ia, Ib) in the state
space.

5.3.1. Localized States. To start with, note that all three states
of CDBrClF exhibit linear parametric motion with respect to
specific resonances as shown in parts c, d, and e of Figure 1.
Similar observations hold for the selected states of CF3CHFI,
with perhaps the exception of state 80, as seen in parts c, d,
and e of Figure 2. At this stage it is worth emphasizing that

such linear parametric motion of the eigenvalues with varying
coupling strengths is indicative of localized states. Thus,
referring to Table 3, the CDBrClF states 9 (9278 cm-1) and
111 (10164 cm-1) exhibit linear parametric motion with large
|Vsbb

R | and |Vfb
R |, respectively. Therefore, it is expected that state

9 is organized by the Ωs ≈ 2Ωb Fermi resonance whereas
state 111, classified previously as an exceptional state in the
dense region of the polyad, is under the influence of Ωf ≈ Ωb

resonance. Along the same lines, linear parametric motion of
the CF3CHFI states 20 (12283 cm-1 with large |Vfa

R |) and 161
(14172 cm-1 with large |Vsaa

R |) indicate (see Table 3) them to be
localized in the Ωf ≈ Ωa and Ωs ≈ 2Ωa resonance zones,
respectively.

Parts a and b of Figure 5 show the state space viewpoint of
the regular states 9 and 20, respectively, along with the classical
template. The dominant influence of Ωs ≈ 2Ωb resonance on
state 9 is clearly evident from Figure 5a. Specifically, the state
is localized along the Psbb ≡ ns + nb/2 ) 4 subpolyad
characterized by the large diffusion region in the classical state
space as well. These observations agree with the level-velocity
predictions shown in Figure 3c and the IPR data in Table 2.
Moreover, the (Ia, Ib) state space projection of state 9 (not shown

TABLE 3: Quantum Expectation Values versus Classical Ergodic Average for the Select Statesa

state Vsff Vsaa Vsbb Vsfa Vsfb Vsab Vab Vfa Vfb

CDBrClF 9 -0.86 -0.32 -6.25 b -0.13 2.69 -0.14 3.14 0.06 -2.78
-0.39 -2.34 -2.67 -1.16 0.91 -2.54 0.37 1.17 -0.95

55 -2.97 -1.71 0.05 -3.50 0.94 -0.99 1.26 0.18 0.03
-1.09 -0.26 0.13 -1.34 0.52 -0.62 -0.70 -0.25 -0.73

111 -2.57 0.01 -0.11 0.39 -0.82 0.21 0.10 0.22 9.68
-0.39 0.82 0.95 0.18 -0.66 0.69 0.05 -0.61 0.67

CF3CHFI 20 -0.94 -0.55 -1.10 0.26 -0.06 -0.02 2.20 20.22 1.18
-1.16 -1.01 -1.50 -0.69 -0.41 -0.37 6.22 5.89 6.57

80 0.55 -0.05 -0.43 -0.88 0.13 -0.19 -1.17 -7.04 -2.75
0.04 -1.05 0.24 -0.74 -0.38 -0.34 -1.98 -2.55 -5.48

161 0.38 13.46 -0.16 3.12 0.26 0.80 -0.39 0.87 -0.01
1.41 11.43 -0.02 3.97 0.37 0.86 -1.01 -0.92 -0.08

a Classical values are shown below the corresponding quantum values and calculated using eq 7. b Quantum values deviating significantly
from the classical ergodic values are shown in bold.

Figure 3. Quantum expectation values for the CDBrClF eigenstates
with polyad N ) 5. Panels a and b show Vsbb

R and Vab
R , respectively.

The quantum expectations are compared to the respective classical
microcanonical averages Vcl calculated using eq 7 (solid line). Note
the strong deviations of VR from Vcl manifesting as regular patterns at
lower energies. Parts c and d focus on the lower energy regions wherein
some of the eigenstate sequences (color lines), predicted earlier, are
also shown. Clearly, the sequences are better organized by the Ωs ≈
2Ωb Fermi resonance.

Figure 4. Same as in Figure 3 but for the N ) 5 eigenstates of
CF3CHFI. Quantum expectation values of the three Darling-Dennison
resonances are shown. In (a) two eigenstate sequences (red and blue)
identified by Jung et al. are also shown. The corrected sequence
(0, 10, t)+ is shown as dotted red line. Panels b and c show regions
(blue and green circles) wherein localized states are not organized by
the Ωf ≈ Ωb resonance. In (a) one of the states (blue arrow) of the
(1, 9, t)+ sequence is influenced by Ωf ≈ Ωa resonance as evident from
the large Vfa

R seen in (b). Some of these states have been labeled
“exceptional” by the previous authors. See text for details.
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here) does not localize along Pab ≡ (na + nb)/2 ) 4 as predicted
earlier7 which explains the perturbation in the level-velocity
sequence seen in Figure 3d. Similarly, the state space projection
of CF3CHFI state 20 shown in Figure 5b establishes the
dominance of Ωf ≈ Ωa resonance with localization along the
subpolyad Pfa ≡ (nf + na)/2 ) 5. Notice the ease with which
the same information is obtained by the level-velocity analysis
summarized in Figure 4b. Although not shown here, the state
spaces for states 111 and 161 show clean features and exhibit
localization in the low diffusion regions.

In order to confirm the nature of the localized states as
predicted by the level velocities, consistent with the IPR
information, we lift the states onto the classical resonance web
using the procedure described in section 3.2. The results for

CDBrClF in terms of both the (ER, N) web and the eigenstate-
lifted web are shown in Figure 6. As expected from Figure 3b,
and in contrast to the earlier work,7 one can clearly see from
Figure 6a that the state 9 is influenced strongly by the Ωs≈ 2Ωb

Fermi resonance. In particular we have confirmed that at lower
energies the average locking time in the Ωs≈ 2Ωb resonance is
atleast a factor of 3 larger than that in the Ωa ≈ Ωb resonance.
The results for state 111 shown in Figure 6c clearly identifies
it as a Ωf ≈ Ωb state. The striking difference in the appearance
of the (ER, N) web and the lifted eigenstate shows the exceptional
character of the state. More specifically this means that the
dynamics of of the zeroth-order states which maximally
contribute to the state 111 are dominated by the Ωf ≈ Ωb lock.

In Figure 7 the phase space representations of the CF3CHFI
eigenstates are shown. The case of state 20, discussed in the
previous section, demonstrates the utility of the present ap-
proach. The striking shift of maximal density observed in Figure
7a from Ωf ≈ Ωb to Ωf ≈ Ωa region of the web confirms the
level-velocity predictions of Figure 4b. Despite the Ωf ≈ Ωa ≈
Ωb lock implied by the figure, the density shift indicates that
state 20 is more appropriately classified as a Ωf ≈ Ωa state.
Interestingly, as a further confirmation of our assignment we
have checked that the angle space density |Ψ20(ψ)|2 (cf. eq 5)
indeed exhibits localization along the diagonal in the ψf ) ψa

plane. The other localized case of state 161 at the energetic top
of the polyad is shown in Figure 7c. As is evident from the
figure, the localization is mainly due to the Ωs ≈ 2Ωa Fermi
resonance consistent with the IPR and level-velocity results of
Figure 2. In this case our results concur with the earlier8

assignment.
5.3.2. Mixed States. In contrast to the above-mentioned

regular states, the CDBrClF state 55 (9749 cm-1) and CF3 CHFI
state 80 (13016 cm-1) are two examples of mixed states. The
former state has not been assigned in the previous work7 whereas
the latter state has been termed8 as an unusual state inVolVing
locking of all modes without implying any pairwise locking.
These two states represent examples of two different ways in
which highly mixed states can arise. State 55 is not involved in
any avoided crossing and, despite exhibiting linear parametric
motion (cf. Figure 1e) with respect to the multimode Ωs - Ωf

- Ωa ≈ 0, is not a pure multimode state. On the other hand,
state 80 is involved in avoided crossing with multiple states
and does not exhibit linear parametric motion with respect to

Figure 5. Quantum states 9 (a) and 20 (b) projected onto the (Is, Ib)
and (Ia, If) state spaces, respectively. The radius of the circle at each
state space point |V〉 corresponds to the amplitude CR

V . The angle-
averaged classical diffusivities at each state space point forms the
classical template. State 9 is delocalized along the polyad Psbb ≡ ns +
nb/2 ) 4 and state 20 corresponds to Pfa ≡ (nf + na)/2 ) 5. Note that
(a) and (b) are constructed using 2000 and 400 state space points,
respectively. The diffusion data at each state space point is obtained
by averaging over a set of 10 initial angle variables.

Figure 6. Phase space representations for the select eigenstates of CDBrClF belonging to polyad N ) 5. In all the plots the density varies from
being a maximum (red) to minimum (blue). The top panels, with axes and ranges identical to the bottom panels, represent the (ER, N) web. The
corresponding bottom panels show the eigenstates |R〉 lifted onto the web using the procedure described in section 3.2. The (ER, N) web is constructed
using 2500 trajectories propagated to T ) 10 ps. Some of the primary resonances (dotted magenta line) and enhanced densities (green arrows) are
shown for clarity. (a) State 9 shows enhanced intensity closer to the Ωs ≈ 2Ωb Fermi resonance. (b) State 55 shows several regions of enhanced
density with the (ER, N) and lifted eigenstate plots being very similar. (c) State 111 clearly shows enhanced density, in contrast to the (ER, N) plot,
corresponding to the Ωf ≈ Ωb induced resonance.
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any of the relevant resonance strengths. Thus, the complexity
of state 55 must be entirely classical in origin as compared to
the predominantly quantum origins of the complexity of state
80.

Further insights into the differing nature of the two mixed
states can be obtained by inspecting the corresponding state
space representations. In panels a and b of Figure 8 the
respective state spaces with classical diffusion information are
shown. It is immediately clear that state 55 is delocalized in
the high diffusion region of the state space whereas state 80,
also delocalized, seems to largely ignore the classical template.
This lends support to conjecture that the state space nature of
state 80, in contrast to that of state 55, is symptomatic of mixing
due to quantum mechanisms.

In the case of the mixed state 80 Figure 7b shows that the
(ER, N) web and the lifted eigenstate plot are identical with
maximal density near the resonance junction Ωf ≈ Ωa ≈ Ωb. A
crucial point to be noted here is that despite the identical nature
of the lifted eigenstate plots for state 20 and state 80 there is an
important differencesthe (ER, N) webs are distinct and the
density shift observed for state 20 is absent in case of state 80.

One possibility is to look for the appropriate frequency ratio
space wherein a significant rearrangement of density occurs in
going from the (ER, N) web to the lifted eigenstate. In the case
of state 80 we find that significant density changes happen in
the (Ωf /Ωa, Ωs/Ωa) space. Combined with the fact that the
quantum expectation Vfa

80 exhibits the largest deviation from the
classical ergodic estimate, one can infer that the Ωf ≈ Ωa

resonance is playing an important role. It also follows that state
80 is a highly mixed state but not an ergodic state. At this point,
although our observations agree with those of the previous
authors, we do not have further insights into the nature of state
80. We suspect that, due to the multistate avoided crossings,
dynamical tunneling might be the cause of extensive mixing.

On the other hand, the nature of state 55 can be ascertained
based on the classical resonance web. Figure 6b shows a
moderate density around the Ωs ≈ 2Ωa Fermi resonance.
However, the maximum density is away from any of the primary
resonances. Similar observations hold for any choice of the
frequency ratio space and clearly point to the mixed nature of
the state. As mentioned before, there is scant evidence to blame
avoided crossings for the observed mixing. In order to under-
stand the mechanism of mixing, Figure 9 compares two different
representations of the state. In Figure 9b we show the semiclas-
sical angle space density representation in the ψa ) ψb plane.
Note that the high density regions seem to be almost circular
in nature. A few other states also show similar features. In
comparison, Figure 9a shows the lifted eigenstate on the (Ωa/
Ωf, Ωs/Ωf) plane. In this representation of the phase space,
different from the one in Figure 6b, it is still true that the (ER, N)
web and the lifted state are similar. Again, the maximum density
does not obviously correspond to any of the primary resonances
shown in Figure 9a. However, analyzing the dynamics corre-
sponding to the maximum density regions indicated frequency
lockings (1-2 ps)

Ωs - (R+ 2)Ωf +RΩa ≈ 0 (30)

with R ) 1, 2, 3, 4. These resonances, shown in Figure 9a,
emanate from the (Ωf/Ωa, Ωs /Ωf) ) (1/1, 2/1) rational point
and seem to correspond well with the maximum density regions.
In fact, evidence for these resonances can be found in Figure
9b as well by recognizing that some of the maximum density
regions correspond to Rψa ≈ (R + 2)ψf which, using the
canonical transformation, are nothing but the resonances in eq
30. It is reasonable to expect that the resonances in eq 30 are
induced by the strong primary resonances. Interestingly, such
examples of diffusion over an extended surface in the frequency
plane have been given before by Laskar.77 The results of Figure

Figure 7. Same as in Figure 6 for the select eigenstates of CF3CHFI belonging to polyad N ) 5. (a) State 20 shows enhanced intensity closer to
the Ωf ≈ Ωa resonance despite the dominance of Ωf ≈ Ωb in the (ER, N) plot. (b) State 80 shows simultaneous locking Ωf ≈ Ωa ≈ Ωb with the lifted
state and the (ER, N) being nearly identical. (c) State 161 clearly shows enhanced density corresponding to the Ωs ≈ 2Ωa Fermi resonance.

Figure 8. Quantum states 55 (a) and 80 (b) projected onto the (Is, If)
and (If, Ib) state spaces, respectively. State 55 is delocalized in the large
diffusion region whereas the delocalized state 80 ignores the classical
regions of high/low diffusion. These observations hold in any of the
two-dimensional state space projections.
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9, to the best of our knowledge, represent a first example of the
impact of extended diffusion on the quantum eigenstates. Thus
state 55 is a mixed multimode state and an instance of dynamical
decoupling which is hard to decipher from purely quantum
approaches. It is also worth emphasizing that Pearman and
Gruebele83 and Leitner and Wolynes84 have stressed the
importance of higher order anharmonic coupling to long time
IVR. Figure 9 demonstrates the crucial role played by high order
nonlinear resonances in determining the nature of mixed
eigenstates.

6. Conclusions

In this work we have shown that it is possible to extend the
classical-quantum correspondence based approaches to provide
dynamical assignments for systems with three or more degrees
of freedom. The utility of quantum expectation values of the
various resonance operators (level velocities) in identifying
sequences of localized states has been demonstrated in the
molecular context. In this regard the knowledge of the level-
velocity values in the classically ergodic and the classically
integrable limits aid in the eigenstate assignments. Since the
examples considered in the present work represent realistic,
nonscaling molecular systems, the success of our approach
augurs well for analyzing eigenstates in dynamically interesting
energy regions of larger molecules with substantial density of
states. We remark here that a large density of states does not
automatically imply that every state is highly mixed in the
energy range of interest. On the contrary, based on several
works, including the present one, and given the current
understanding of the scaling of coupling constants, one expects

to find a complex intermingling of localized and delocalized
states. Such interleaving of localized and delocalized states
effects the intramolecular dynamics in a profound way and our
results indicate that techniques81,82 based on level velocities
should be ideal for gaining detailed insights into the dynamics.

We have also supported the level-velocity analysis and
predictions by using a novel method to lift the quantum
eigenstates onto the dynamical classical resonance web. It is
possible to provide more refined criteria for the lifting process,
but at the cost of considerable computational overhead. Efforts
are currently being made in our group to come up with efficient
ways to lift the quantum eigenstate onto the classical resonance
web. More importantly, note that the level-velocity and the
eigenstate lifting are both basis-independent methods. The results
of Figures 6, 7, and 9 illustrate the central role played by the
dynamical Arnol’d web in the process of IVR. There has been
a concerted effort69,70 over the last couple of years to highlight
the importance of the dynamical Arnol’d web and the current
work shows its utility in the context of highly excited eigen-
states. It is possible, for example, to identify whether the nature
of a mixed eigenstate is primarily due to classical or quantum
mechanisms. Note that valuable insights are obtained even by
retaining only, hence the apparent sparse nature of the resonance
webs, the maximum frequency components in the wavelet
transform. Although computationally demanding, there are
reasons to expect that including some of the subdominant
frequencies can lead to information on the role of high order
resonances in terms of long time IVR dynamics and conse-
quently into the nature of the eigenstates.

It is useful to make a couple of brief comments at this stage
to compare our approach to the previous approaches based on
analyzing the stabilty and bifurcations of the various periodic
orbits. The periodic orbit based methods are ideally suited for
systems with two or lower degrees of freedom wherein the
global phase space can be easily visualized.1 Consequently, the
nature of the eigenstates can be established by lifting them into
the phase space using the Wigner or the Husimi representations.
However, such approaches are not practical for systems with
three or more degrees of freedom, i.e., those considered in this
work. Apart from the practical limitations, note that there are
also conceptual issues related to the dimensionality of the phase
space structures required for a clean partitioning of the phase
space into dynamically distinct regions. Such partitioning is key
for an unambiguous dynamically assignment of the quantum
states. Thus, although the primary periodic orbits of the full
four mode Hamiltonian in eq 20 can be determined via the fixed
points of the flow corresponding to the reduced Hamiltonian of
eq 24, these periodic orbits do not partition the phase space
into dynamically distinct regions.4 In particular, one needs to
determine the higher dimensional analog known as normally
hyperbolic invariant manifold (NHIM), and we refer the
interested reader to the earlier literature wherein detailed
discussions regarding the issues involved in computing the
NHIMs are provided.85 In the present approach an approximate
partitioning is obtained by constructing the Arnol’d web which
allows us, together with the level-velocity analysis, to identify
interesting class of states as in Figure 9. Note that periodic orbit
based techniques cannot identify such states for reasons stated
above. It remains to be seen if the NHIMs are capable of
revealing the existence of such partially localized states in a
straightforward manner.

Clearly, unraveling the nature of the eigenstates and decoding
the dynamical information requires a combination of different
approaches. For instance, preceding the computationally easy

Figure 9. Two different representations of the CDBrClF mixed state
55. (a) Eigenstate lifted onto the (Ωa/Ωf, Ωs/Ωf) space. Key primary
resonances are shown as magenta lines and labeled. Some of the higher
order induced resonances are shown as green lines and labeled by the
value of R in eq 30. (b) Eigenstate density |Ψ(ψ)|2 in the ψa ) ψb

plane. Note the circular regions of high density which correspond to
the high-density region in (a). See text for discussion.
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approach of Jung et al. with IPR and level-velocity calculations
will lead to a more comprehensive understanding of the states
and, hopefully, to much firmer dynamical assignments. While
techniques like the Arnol’d web and eigenstate lifts are more
involved, they do yield detailed insights and are presumably
less difficult to implement as compared to the task of mapping
out the NHIMs in multimode systems. Further studies are
required to find the ideal mix of methods to adopt for the
dynamical assignments and identify the birth of new modes
due to a variety of bifurcations. Nevertheless, we believe that
one now has a decent set of tools to understand the nature of
the highly excited quantum states from a classical-quantum
correspondence point of view.
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Bäck, A. Phys. Chem. Chem. Phys. 2001, 3, 2289. Callegari, A.; Rizzo,
T. R. Chem. Soc. ReV. 2001, 30, 214. Bar, I.; Rosenwaks, S. Int. ReV. Phys.
Chem. 2001, 20, 711. Grebenshchikov, S. Yu.; Schinke, R.; Hase, W. L. In
ComprehensiVe Chemical Kinetics, Part I; Green, N. J. B., Ed.; Elsevier:
Amsterdam, 2003; Vol. 39,Chapter 3. Assman, J.; Kling, B.; Abel, B.
Angew. Chem., Int. Ed. 2003, 42, 2226. Gruebele, M.; Wolynes, P. G. Acc.
Chem. Res. 2004, 37, 261. Carpenter, B. K. Annu. ReV. Phys. Chem. 2005,
56, 57. Elles, C. G.; Crim, F. F. Annu. ReV. Phys. Chem. 2006, 57, 273.
Leitner, D. M. Annu. ReV. Phys. Chem. 2008, 59, 233.

(27) Jacobson, M. P.; Field, R. W. J. Phys. Chem. A 2000, 104, 3073.
Field, R. W.; O’Brien, J. P.; Jacobson, M. P.; Solina, S. A. B.; Polik, W. F.;
Ishikawa, H. AdV. Chem. Phys. 1997, 101, 463.

(28) Quack, M. J. Mol. Struct. 1995, 347, 245. Marquardt, R.; Quack,
M. Encyclopedia of Chemical Physics and Physical Chemistry I; Moore,
J. H., Spencer, N. D., Eds.; IOP: Bristol, 2001; p 897. Quack, M.; Stohner,
J.; Willeke, M. Annu. ReV. Phys. Chem. 2008, 59, 741.

(29) Beil, A.; Hollenstein, H.; Monti, O. L. A.; Quack, M.; Stohner, J.
J. Chem. Phys. 2000, 113, 2701.

(30) Pochert, J.; Quack, M.; Stohner, J.; Willeke, M. J. Chem. Phys.
2000, 113, 2719.

(31) Cushman, R. H.; Duistermaat, J. J. Bull. Am. Math. Soc. 1988, 19,
475. Joyeux, J.; Sadovskii, D. A.; Tennyson, J. Chem. Phys. Lett. 2003,
382, 439. Cooper, C. D.; Child, M. S. Phys. Chem. Chem. Phys. 2005, 7,
2731.

(32) Davis, M. J.; Heller, E. J. J. Chem. Phys. 1981, 75, 246. Heller,
E. J. J. Phys. Chem. 1995, 99, 2625. Heller, E. J. J. Phys. Chem. A 1999,
103, 10433.

(33) Keshavamurthy, S. J. Chem. Phys. 2003, 119, 161. Keshavamurthy,
S. J. Chem. Phys. 2005, 122, 114109. Keshavamurthy, S. Phys. ReV. E
2005, 72, 045203(R). Keshavamurthy, S. Int. ReV. Phys. Chem. 2007, 26,
521.

(34) Sundberg, R. L.; Abramson, E.; Kinsey, J. L.; Field, R. W. J. Chem.
Phys. 1985, 83, 466.

(35) Sitja, G.; Pique, J. P. Phys. ReV. Lett. 1994, 73, 232.
(36) Keske, J.; McWhorter, D. A.; Pate, B. H. Int. ReV. Phys. Chem.

2000, 19, 363.
(37) Leitner, D. M.; Gruebele, M. Mol. Phys. 2008, 106, 433.
(38) Annesley, C. J.; Berke, A. E.; Crim, F. F. J. Phys. Chem. A 2008,

112, 9448.
(39) Dunham, J. L. Phys. ReV. 1932, 41, 721.
(40) Joyeux, M.; Sugny, D. Can. J. Phys. 2002, 80, 1459.
(41) McCoy, A. B.; Sibert, E. L. In Computational Molecular Spec-

troscopy; Jensen, P., Bunker, P. R., Eds.; Wiley: Chichester, U.K., 2000.
(42) Van Vleck, J. H. ReV. Mod. Phys. 1951, 23, 213.
(43) Birkhoff, G. D. Dynamical Systems, Colloq. Pub. No. 9, reVised

edition; American Mathematical Society: Providence, RI, 1979.
(44) Gustavson, F. G. Astron. J. 1966, 71, 670.
(45) Kellman, M. E. J. Chem. Phys. 1990, 93, 6630.
(46) Fried, L. E.; Ezra, G. S. J. Chem. Phys. 1987, 86, 6270.
(47) Lefebvre-Brion, H.; Field, R. W. The Spectra and Dynamics of

Diatomic Molecules; Elsevier: Amsterdam, 2004.
(48) Kuzmin, M. V.; Nemov, I. V.; Stuchebrukhov, A. A.; Bagratashvili,

V. N.; Letokhov, V. S. Chem. Phys. Lett. 1986, 124, 522. Kuzmin, M. V.;
Stuchebrukhov, A. In Laser Spectroscopy of Highly Vibrationally Excited
Molecules; Letokhov, V. S., Ed.; Adam Hilger: Bristol, 1989.

(49) Heisenberg, W. Z. Phys. 1925, 33, 879. Translated in Sources of
Quantum Mechanics; Van der Waerden, B. L., Ed.; Dover: Mineola, NY,
1967.

(50) Lichtenberg, A. J.; Lieberman, M. A. Regular and Chaotic
Dynamics, 2nd ed.; Springer: Berlin, 1992.

(51) Feynman, R. P. Phys. ReV. 1939, 56, 340.

Nature of Highly Excited Eigenstates J. Phys. Chem. A, Vol. 113, No. 9, 2009 1729



(52) Noid, D. W.; Koszykowski, M. L.; Tabor, M.; Marcus, R. A.
J. Chem. Phys. 1980, 72, 6169.

(53) Ramachandran, B.; Kay, K. G. J. Chem. Phys. 1993, 99, 3659.
(54) Pechukas, P. Phys. ReV. Lett. 1983, 51, 943. Yukawa, T. Phys.

ReV. Lett. 1985, 54, 1883. Nakamura, K.; Lakshmanan, M. Phys. ReV. Lett.
1986, 57, 1661. Wilkinson, M. J. Phys. A: Math. Gen. 1987, 20, 2415.
Takami, T.; Hasegawa, H. Phys. ReV. Lett. 1992, 68, 419. Simons, B. D.;
Altshuler, B. L. Phys. ReV. Lett. 1993, 70, 4063. Fyodorov, Y. V. Phys.
ReV. Lett. 1994, 73, 2688. Zakrzewski, J.; Delande, D. Phys. ReV. E 1993,
47, 1650. Guarneri, I.; Zyckowski, K.; Zakrzewski, J.; Molinari, L.; Casati,
G. Phys. ReV. E 1995, 52, 2220. Sano, M. Phys. ReV. E 1996, 54, 3591.
Kuntsman, P.; Zyckowski, K.; Zakrzewski, J. Phys. ReV. E 1997, 55, 2446.
Lakshminarayan, A.; Cerruti, N. R.; Tomsovic, S. Phys. ReV. E 1999, 60,
3992. Cerruti, N. R.; Keshavamurthy, S.; Tomsovic, S. Phys. ReV. E 2003,
68, 056205.

(55) Schnirelman, A. I. Usp. Mat. Nauk 1974, 29, 181. Colin de Verdiere,
Y. Commun. Math. Phys. 1985, 102, 497. Zelditch, S. Duke Math. J. 1987,
55, 919.

(56) Kaplan, L.; Heller, E. J. Physica D 1998, 121, 1.
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